- A **computer system** contains:
 - Memory:
 - o Cpu:
 - o I/O Devices
- Memory:
 - The part of computer system where programs and data are stored
 - o Basic unit is bytes (stored in binary) in memory address
 - Without memory for processors to read and write there would be no stored-program digital computers
 - Memory can be divide into many different *memory addresses*
- The **memory** can be put in three level **hierarchy**:
 - CPU → Cache: SRam → Primary memory: DRAM → Secondary memory: Hardrives
 - NOTE: IT IS IMPORTANT TO UNDERSTAND INSTRUCTIONS COME FROM MEMORY IF INSTRUCTIONS ARE NOT GIVING TO CPU FAST ENOUGH THE CPU WOULD BE JUST WAITING FOR A LONG TIME. THE CACHE GIVES INSTRUCTIONS FAST.
- •

• Memory addresses:

- Is the primary memory (main memory) it consist of many *storage locations*, each of them are identified by a *unique address*
- Ability for cpu to identify each location is called *addressability*
- Each location stores a *word* this is the number of bits cpu can processed in one operation. No fixed length may be- 16, 24, 32 bit
- Large word improves system performance may be less efficient when full word length is not used
- There are two types of memories:
 - Primary memory
 - Cache memory
 - Secondary memory (really called storage)
- **Primary Memory** has many features these include
 - Connected to processor through memory bus
 - o Relatively fast access compared storage
 - Volatile (when power off data lost)
 - EG: ROM, Ram, Cache (not a memory though.)
- Ram:
 - Stores part of the operating system that manages operating system
 - Stores part of the software application being executed
 - \circ Temporarily holds instructions for cpu
 - VOLITILE memory
 - \circ Read/writeable
 - Contain **two types of Ram**:

- **Static Ram**: Implemented using latches (flip-flops) sr latches
 - Does not need to be refreshed
 - Complex implementation
 - Expensive compared to Dram
 - Large size requires 6 transistors
 - Faster access and less power than Dram
 - Used: processors (cache) (cpu)
- Dynamic Ram:
 - Cheap & slow compared to SRam because of referencing. Read/write can't be done during refreshing
 - Use one capacitor + transistor per bit
 - Organised in a grid
- The way we determine whether we want sRam or Dram is determined by cost and access time
 - Access time: Is time between addressing and data available on data line
 - Cost: cost per bit
 - Generally: SRam is more expensive has fast access time but is bulkier. Dram is compact.
- Cache:
 - Faster than ram for cpu access
 - Small unit of ultra-fast memory built near processor
 - Used to store frequent or recently accessed program data/instructions in cache so it can be executed fast.
 - Provide fast access to data that is likely to be used. These data are guessed aka: cache takes data that it things will need next
 - Small amount of memory contains: 256kb to 512kb
 - Temp storage usually for instructions
 - Level 1: built within cpu & level 2: may be on cpu chip nearby (external)
 - Provides faster access to data at higher level
- Advantages for secondary storage over primary storage
 - Secondary storage is used for long terms storage of software + data outside cpu
 - \circ $\,$ Secondary storage is no volatile so when the power is off data is not lost
 - Data in ram cant be recalled if power is off

- Storage is less expensive than memory
- EG: Storage is for reading and writing data: magnetic, optical, and electronic
- **Secondary storage:** are used to store/save & backup+ transport files. Characteristics include-
 - Medium: Mechanism of data? Electronic, mechanical, flash
 - Capacity: how big it is
 - Reading/writing speed:
 - Performance: transfer rate/access speed
 - Reliability: if you write something will it be corrupted/lost
- **Secondary storage:** can be classified
 - Magnetic storage: Floppy disc, hard drives + tapes
 - o Optical storage: cd dvd, bluray
 - Solid state memory: Usb, Memory card, ssd, mp3 players
- **Bus:** So on the microarchitecture level there are 3 types of data sent. The Bus is essentially the golds lines on the motherboard/external cables/ribbon cables. **A bus is a data communication between two more connecting devices**. They carry:
 - o Electrical power
 - Control siginals
 - o Memory address
 - o Data
- There are different types of busses these include:
 - Memory bus: Bus between cpu and main memory. Combines with system bus to create local bus
 - System bus: main bus
- Design goals of external cable/bus?
 - I/O device should get power from the cable
 - \circ New bus/I/O should be inexpensive to manufacture
 - No reboot required after installing new device
 - System should support real time devices
 - Should be installable while computer running
- Disadvantages of single bus (means one job can only be done at one time. Ie print something) that:
 - Slower device dictates maximum bus speed
 - Aggregated data approaches bus capacity
 - Physically long busses:
 - Propagation delays: long data path means that coordination of bus use can adversely affect performance
- Multiple Busses: Advantages:
 - Support wider variety of interfaces

- Isolate processor-to-memory traffic from input/output traffic
- allows cache to act as interface to system bus
- Processor has the bus that connects as direct interface to chip, then an expansion bus interface to system bus.

*ALL COMPONENTS ATTACH TO A BUS

**NOTE TRANSFER LECTURE 1 SLIDES TO HERE **NOTE